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Abstract
We re-examine the calculation of the dissipation energy in the non-contact
atomic force microscope for a model flat surface within the stochastic friction
force (the ‘Brownian motion’) mechanism. All important aspects of the problem
are taken into account. In particular, we have considered for the first time: (i)
the effect of the tip on the surface atom vibrations including the possibility
of inducing local vibrational modes and (ii) the second term in the expansion
of the fluctuating tip–surface force in atomic displacements. We found that
generally, if the tip does not come very close to the surface, the first effect
noticeably reduces the dissipation energy, while the second-order correction
is very small, at least for the model planar surface considered. However, if
during its oscillations the tip comes closer than a certain critical distance to the
surface, a local vibrational mode is induced which may considerably increase
the dissipation energy depending on its lifetime, i.e. the degree of anharmonicity
in the system coupling the local mode (LM) with the rest of the phonons. For
certain systems which provide long-living LMs, this effect may serve as a
microscopic mechanism of energy dissipation. We also demonstrate that the
dissipation power increases with the tip oscillation amplitude.

1. Introduction

An important step toward strengthening the success of large-amplitude non-contact atomic
force microscopy (NC-AFM) [1–10] would be widening its possible range of applications.
The conservative component of the tip–surface interaction has been the main focus of most
of the theoretical and experimental work. These studies have been extremely successful, as
true atomic resolution has been achieved for a number of crystal surfaces of non-conducting
materials [11–13] and the basic physics seems to be clear [14–20]. However, there is
also another, namely stochastic, component of the interaction which has received attention
only recently [11, 14, 20–23]. Although atomic resolution has also been obtained in some
cases [11, 12, 24], the nature of the dissipation processes in the NC-AFM system is far from
being well understood.
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Three models have been suggested so far to explain energy dissipation in the NC-AFM.
The main idea of the adhesion hysteresis mechanism [25] (borrowed from tapping mode
microscopy [26]) is based on atomic processes caused by the approaching and then retracting
tip during the close approach: the tip distorts potential energy surfaces (e.g. reduces barriers)
for atoms in its proximity in such a way that it may be more feasible for them to jump from
one potential energy minimum to the other. The energy gain is then transferred to the lattice
phonons, essentially leading to energy dissipation of the order of typical energies of atomic
processes (0.1–2 eV per oscillation cycle), which is in within the range of values measured
in experiments [11, 12, 15, 23]. Note that so far this mechanism has been considered only
statically; its non-equilibrium nature [27] has not yet been sufficiently explored.

Two other models exploit the stochastic aspect of the tip–surface interaction more directly.
In [28] it is suggested that a macroscopic current associated with the tip movement during
oscillations results in an energy dissipation due to dynamic image interaction with the surface.
However, it is argued in [29] that the proposed mechanism should give energies which are
much smaller than experimentally observed.

In this paper we shall consider another mechanism: the so-called stochastic friction force
mechanism [27, 30–32]. According to this, the stochastic component in the tip–surface force
is caused by vibrations of atoms in a microscopic region of the junction. This includes atoms
of the surface which are in the tip proximity and also atoms at the tip end (the nano-tip). In a
sense the tip performs as an oscillating Brownian particle moving on a much slower timescale
than vibrating atoms. The latter never establish complete thermodynamic equilibrium because
of the constantly moving tip. As a result of this non-equilibrium process, a friction force
Ff rict (Q, Q̇) = −ξ(Q)Q̇, proportional to the tip velocity Q̇, appears which is responsible for
the energy dissipation. Here Q is the vertical position of the tip with respect to the surface and

ξ(Q) = βγ (Q) = β lim
z→+i0

γ (Q, z) = β lim
z→+i0

∫ ∞

0
eiztγ (Q, t) dt (1)

is the corresponding friction coefficient defined [32] via the Laplace transform of the fluctuating
tip–surface force autocorrelation function

γ (Q, t) = 〈�X(Qq)eitL̂�X(Qq)〉eq = 〈�X(Qq(0))�X(Qq(t))〉eq . (2)

Hereβ = 1/kBT is the inverse temperature and t is time. The exponential factor in equation (1)
has been introduced to ensure convergence of the integral at the upper limit. The angle
brackets indicate the equilibrium statistical average for the tip fixed at Q; i.e. the statistical
average is calculated using the equilibrium distribution function f

(N)
0 (pq) associated with

the fast subsystem (atomic vibrations), the coordinates and momenta of which are denoted
by the column matrices q and p. In addition, q(t) corresponds to the classical evolution
of the atomic coordinates with time. The fluctuation of the force �X(Qq) is defined as
�X(Qq) = X(Qq) − 〈X(Qq)〉eq , where X(Qq) = −∂�Qq/∂Q is the instantaneous tip–
surface force calculated for the current positions q of all atoms, �Qq is the interaction energy
of the tip and the surface. Since we are interested in the fluctuation of the tip–surface force,
which appears as a difference between the instantaneous and the average forces, it is clear that
only part of the total interaction which depends explicitly on the atomic positions is relevant
here. Therefore, for the sake of simplicity in what follows we shall call that part of the total
force the tip–surface force. It includes direct interactions between atoms of the nano-tip and
the surface. Other interactions such as the van der Waals interaction and that arising due to
applied bias (the capacitance force) serve as a conservative part of the force and are irrelevant
to the problem studied here.

The first estimate of the dissipation energy associated with this mechanism was made
in [30] using a very simple model in which the surface has been modelled by a single atom.



Energy dissipation above plane terraces of a model crystal in non-contact atomic force microscopy 4331

The calculated dissipation energies turned out also to be much too small in comparison with
those observed experimentally. In [32] a better model was suggested: although the tip has been
allowed to interact with only one surface atom directly underneath it (called the first atom), this
atom interacted with all surface atoms which all were allowed to relax. Significantly larger
dissipation energies have been obtained, although still several orders of magnitude smaller
than in the experiment.

It seems that it follows from these first calculations that the stochastic friction force
mechanism cannot explain observed energy losses in the NC-AFM. However, before we reach
such a conclusion, we have to consider carefully all the approximations made in the treatment
of [32]. In particular, while calculating the friction, the phonon Green function of the tip-free
surface has been used in [32], i.e. the effect of the tip on the vibrations of surface atoms has
not been accounted for. In addition, as in [30], only the first term in the expansion of the
tip–surface force in atomic displacements has been included. Therefore, the purpose of the
present paper is to extend our previous treatment of the model surface considered in [32] and
include these two additional effects in order to check the validity of the theory.

Therefore, in the next section a general expression for the friction via the surface Green
function is obtained up to the second term in the expansion of the force autocorrelation
function (2) with respect to atomic displacements. In section 3 our model surface system will
be introduced and the final expression for the friction coefficient will be developed including
the effect of the local modes (LMs) induced by the tip. Results of the calculations will be
presented in section 4 and the conclusions will be drawn in section 5.

2. General expression for the friction coefficient

To calculate the friction coefficient given by equations (1) and (2), we use the same method as
in our previous work [32]. The surface and the nano-tip are considered as a set of interacting
atoms: a finite cluster is used to model the nano-tip while an infinite number of atoms is used
to model the surface. Therefore, we explicitly use a discrete model for the surface. Then, we
expand the fluctuation of the tip–surface force X(Qq) in a power series with respect to atomic
displacements uiα = qiα − q0

iα:

�X(Qq) =
∑
iα

Xiα(Qq0)uiα + 1
2

∑
ii ′αα′

Xiα,i ′α′(Qq0){uiαui ′α′ − 〈uiαui ′α′ 〉eq} + · · · (3)

where i, i ′ designate atoms of the surface and those of the nano-tip, and the Greek indices
are used for Cartesian components of vectors and tensors. The column-matrix q0 = ||qiα||
represents equilibrium positions of the atoms when the tip is fixed at Q. Note that q0 depends
explicitly on Q, i.e. q0 = q0(Q). It is obtained by minimizing the total potential energy of
the whole system. The vector X1 = ||Xiα(Qq0)|| and the matrix X2 = ||Xiα,i ′α′(Qq0)|| are
given as derivatives of the tip–surface interaction energy and can be calculated for the given
interaction model.

Inserting expansion (3) into equation (2), we will arrive at a sum of terms containing
various displacement–displacement correlation functions. The first non-vanishing term,
the displacement–displacement correlation function, has been considered previously [32].
Similarly, one can work out higher-order contributions. Let D be the dynamical matrix of
the combined system (surface + nano-tip), whose eigenvalues and eigenvectors are ωλ and
eλ = ||eiα(λ)||. Then, the next non-vanishing term in γ (Q, t) of equation (2) will be of the
fourth order:

γ2(Q, t) = 1
4

∑
λ1λ2

∑
λ3λ4

!λ1λ2Kλ1λ2;λ3λ4!λ3λ4 (4)
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where

Kλ1λ2;λ3λ4 = 〈(ζλ1ζλ2 − 〈ζλ1ζλ2〉eq)(ζλ3(t)ζλ4(t) − 〈ζλ3ζλ4〉eq)〉eq (5)

is the corresponding correlation function in this case and we introduced a quantity !λ1λ2 =
e†
λ1

D2eλ2 , where D2 = M−1/2X2M
−1/2. Necessary classical statistical averages can be

easily calculated as 〈ζλζλ′ 〉eq = δλλ′/βω2
λ, 〈ηληλ′ 〉eq = δλλ′/β and

Kλ1λ2;λ3λ4 = 1

β2
(δλ1λ3δλ2λ4 + δλ1λ4δλ2λ3)

cos(ωλ1 t)

ω2
λ1

cos(ωλ2 t)

ω2
λ2

. (6)

Here (ζλ) and (ηλ = ζ̇λ) are conjugate normal coordinates and momenta. Inserting
equation (6) in (4), introducing a matrix function [32]

&(t) =
∑
λ

eλe
†
λ

ω2
λ

cos(ωλt) (7)

and using the fact that !λ1λ2 = !λ2λ1 , we obtain

γ2(Q, t) = 1

2β2
Tr(&(t)D2&(t)D2). (8)

The corresponding second-order contribution to the friction coefficient of equation (1) is
then easily calculated as

ξ2(Q) = lim
z→+i0

βγ2(Q, z) = π

β

∫ ∞

0
Tr[(&̃(ω)D2)

2] dω (9)

where

&̃(ω) = 1

|ω|
∑
λ

eλe
†
λδ(ω

2 − ω2
λ) ≡ − 1

π |ω| Im G(ω2 + i0) (10)

is the Fourier transform of &(t) and G(z) = (z1 − D)−1 is the phonon Green function. Note
that while deriving this expression we have made use of the fact that &̃(ω) is an even function
of ω; see equation (10). Note that since &̃(ω) is proportional to the imaginary part of the
Green function, the second part of equation (10), it is actually non-zero only up to some
maximum phonon frequency ωmax , so the integration above is in fact finite. At the bottom of
the integration interval the integral also converges since, as can easily be shown, &̃(ω) has a
well defined ω → 0 limit.

Several points are worth mentioning here. Firstly, contrary to the case of the first
contribution to the friction [32], all phonons contribute to the integral above. In particular, if
there are local vibrational modes (LMs) either due to a defect (e.g. adsorbed species) or directly
induced by the tip, then these will also contribute to ξ2(Q). Note that the LMs do not contribute
to the first component, ξ1(Q), of the friction. Secondly, since the interaction between the tip
and the surface is of a certain finite radius, D2 is actually a finite square matrix, so the matrix
multiplications in equation (9) can be performed in practice for everyQ. Thirdly, as in the case
of the first-order contribution, the information about the vibrations in the combined system
is all expressed via the Green function according to equation (10). It can easily be seen that
this is the case for any other higher-order term which we, however, do not consider in this
paper. Note that the Green function should depend on the tip position Q as well. Recall that
this dependence has not been taken into account in our previous work [32]. Finally, unlike
the first contribution, the second one is proportional to the absolute temperature, i.e. it linearly
increases with T (recall that our present consideration is entirely classical).

Thus, summarizing, if we know the interaction between the atoms of the combined system
(surface + nano-tip), then for every tip position Q we can calculate their equilibrium positions
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q0, the corresponding dynamical matrix D at q0 and, therefore, the Green function G(z).
In addition, by expanding the interaction energy�Qq between atoms of the surface and those of
the nano-tip in atomic displacements and differentiating it with respect to Q, we can obtain the
vector X1 and the matrix X2 of the expansion (3). Using this information, one can calculate (at
least, in principle) various contributions to the friction coefficient ξ(Q) = ξ1(Q)+ξ2(Q)+ . . . ,
the first two of which have been discussed above. Note that further terms in this expansion
can be similarly developed as well, but the expressions become more cumbersome. Once
the friction coefficient is known, the average dissipation power P can also be calculated as
discussed e.g. in [23,30,32]. In the next section a simple model for a rigid tip interacting with
a planar surface will be considered for which the formalism developed will be illustrated.

3. Calculation for a model plane surface

3.1. Model

To calculate the dissipation energy, essentially the same model as in our previous work will
be used [32]. The tip is considered as rigid, i.e. the nano-tip is simulated by just one atom at
the tip end which is not allowed to relax. The surface consists of identical atoms of mass m
arranged into a simple cubic lattice. The interaction of the tip atom with the surface is given
by a sum of pairwise interactions with all surface atoms �Qq ≡ ∑

i φ(Q − qi). Here the
coordinates qi = ||qiα|| of surface atoms correspond to their displacements from the perfect
lattice positions. The strongest (and dominant) interaction is with the closest surface atom
(called the first atom [30]) which is lying directly under the tip. Therefore, we shall adopt
here the simplest approximation [30, 32] in which the tip–surface interaction is modelled by
that between the tip and the first surface atom only: �Qq ≡ φ(Q − q1z). This interaction
depends on the distance Q− q1z between the tip atom, whose vertical position with respect to
the geometrical surface plane is Q, and the vertical coordinate of the first atom q1z. Note that
this approximation is not crucial and can be easily extended for a proper numerical calculation.
However, qualitative insight into the problem can already be gained within this approximation,
which allows analytical calculation of the phonon Green function. It is expected that the
friction coefficient calculated within this model will be up to an order of magnitude smaller
than that calculated using the full treatment in which interactions with all surface atoms are
taken into account.

Following the method developed in [32], we assume that |q1z| � Q and expand �Qq in
a power series with respect to q1z. Then, the force constant matrix will be given by

- = ||-iα,i ′α′ || = -0 + ||δi1δαzδi ′1δα′zφ
′′(Q)||. (11)

Here, -0 = ||-0
iα,i ′α′ || is the corresponding force constant matrix of the perfect surface (i.e.

without the tip). As one can see, the interaction with the tip results in a local perturbation to
the matrix -0. Note that within this model the only non-zero elements of the vector X1 and
matrix X2 are X1z = φ′′(Q) − φ′′′(Q)q0

1z and X1z,1z = −φ′′′(Q). This is a consequence of
the fact that the tip interacts only with the coordinate q1z of the first atom.

3.2. The Green function of the combined tip–surface system

As discussed in section 2, the Green function is an essential ingredient of the two contributions
to the friction coefficient. To calculate it we notice that the local perturbation to the force
constant matrix -0 of the perfect surface discussed above results in the only non-zero element
of the perturbation W1z,1z = −φ′′(Q)/m to the dynamical matrix D0 of the perfect surface.
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Since only the 1z, 1z element of the Green function will be needed in our model (see below),
we easily obtain using simple and standard manipulations:

G1z,1z(z) = G0
1z,1z(z)

1 − (φ′′(Q)/m)G0
1z,1z(z)

(12)

where G0(z) = (z1 − D0)
−1 is the Green function of the perfect surface.

To calculateG0
1z,1z(z), we shall use the same trick as in our previous work [32] and assume

that G0 can be modelled by the bulk Green function. Then, its diagonal elements are all the
same and can be linked to the phonon density of states (DOS) ℵ(ω) = ∑

λ δ(ω − ωλ) of the
perfect crystal as follows:

G0
1z,1z(z) = 1

3N
Tr G(z) = 1

3N

∫ ∞

0

ℵ(ω) dω

z − ω2
≡ R0(ω) + iI0(ω) (13)

where the real and imaginary parts (in the limit z → ω2 +i0) are given by: R0(ω) = −λmϑ(x)

and I0(ω) = −(π/2)mλ|x|. Here the Debye model for the phonon DOS has been used. In
addition, λ = (3/mc2)(vc/6π2)2/3 is a constant, c an effective sound velocity in the crystal,
vc the bulk unit cell volume; x = ω/ωD is a relative frequency, ωD = c(6π2/vc)

1/3 being the
Debye frequency, and the function ϑ(x) = 1+ (x/2) ln |(x − 1)/(x + 1)|. Note that I0(ω) �= 0
only when |x| � 1 (i.e. for |ω| � ωD).

Calculating the imaginary part of the Green function (12), we can finally calculate&1z,1z(ω)

by virtue of equation (10). For |x| � 1 we obtain

&1z,1z(ω) = vc

4π2c3

{
[1 + λφ′′(Q)ϑ(x)]2 +

[
π

2
λφ′′(Q)x

]2}−1

(14)

where, as before, x = ω/ωD . One can see that &1z,1z(ω) is a well defined function at ω = 0.

3.3. Local modes

It follows from the structure of the system Green function (12) that in certain circumstances
LMs can exist. Indeed, beyond the spectrum of the free surface, i.e. when ω > ωD , we have
ImG0

1z,1z(ω
2 + i0) = 0. Therefore, if the real part of the denominator is equal to zero for some

ω = ωLM > ωD , i.e. if

g(x) ≡ 1 + λφ′′(Q)ϑ(x) = 0 (15)

for some x ≡ xLM = ωLM/ωD > 1, then the Green function would have a pole which should
contribute to the friction as well. It is easily verified that in our model only a single solution
xLM > 1 is possible provided that φ′′(Q) > 0. As will be seen later on, this condition imposes
certain limitations on the Q-values for which the LMs can exist.

To calculate the contribution of the LMs to the friction ξ2(Q) (this will be done in the next
subsection), we will need an expression for the imaginary part of the Green function (12) at
z = ω2

LM + iε with a small but finite ε:

ImG1z,1z(ω
2 + iε) = − 6πxLM

(λφ′′(Q))2ϑ ′(xLM)
�ε((x − xLM)g1) (16)

where g1 = g′(xLM) = 2ω2
DxLM > 0 and �ε(x) = (1/π)ε/(ε2 + x2). The latter function

tends to the delta function in the ε → +0 limit. Thus, as one would expect, the imaginary part
of the Green function at the LM is proportional to the delta function δ(ω−ωLM) and so is the
function &1z,1z(ω) according to equation (10).
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3.4. First- and second-order contributions to the friction

As has been shown in [32], the first-order contribution to the friction ξ1(Q) in our model is
expressed via&1z,1z(0). However, it has been calculated in [32] without taking into account the
extra term in- of equation (11), i.e. by assuming that the tip does not affect the vibrations of the
surface atoms. The same approximation has been effectively used in [30]. This approximation
can be easily dispensed with if we use equation (14) for &1z,1z(ω). Setting x = 0 there, we
obtain

&1z,1z(0) = vc

4π2c3

1

(1 + λφ′′(Q))2
. (17)

The difference from our previous result of [32] is in an additional second factor which is
Q-dependent.

The second contribution to the friction coefficient is calculated in accordance with
equation (9). As the integration there is performed over the whole frequency range, there
may be two contributions. As mentioned above, the only non-zero element of the matrix X2 is
X1z,1z = −φ′′′(Q), so the first contribution, due to the continuum 0 � ω � ωD in the spectrum
of the tip-free surface, is

ξ
(1)
2 (Q) = πλ2

4βωD

[φ′′′(Q)]2
∫ 1

0

{
[1 + λφ′′(Q)ϑ(x)]2 +

[
π

2
λφ′′(Q)x

]2}−2

dx (18)

where the explicit expression (14) for &1z,1z(ω) has been used. In our calculations the
integration here has been performed numerically.

If LMs exist, there will also be an additional contribution to ξ2(Q). If we use, however, our
result from section 3.3, we would obtain an integral of the square of the delta function which is
infinite. This seemingly paradoxical result is the consequence of the harmonic approximation.
Indeed, the LM, being a vibrational mode separated from the continuum of other phonon
modes, corresponds to a single harmonic oscillator. However, in this case the corresponding
time autocorrelation functions do not decay with time and, therefore, their Laplace transform
is infinite. Recall, for example, that the t−1-decay of the displacement autocorrelation
function [32] follows from the integration over frequencies within the continuum of the tip-free
system.

Therefore, it is clear, that in order to take account of the LMs one has to go beyond
the harmonic approximation. As we are interested in this paper mostly in drawing a
qualitative picture of the dissipation phenomenon in the NC-AFM, we have used a simple
model corresponding to the so-called quasiparticle approximation [33]. In this case the
Green function is formally similar to that of the harmonic model, but the frequencies ωλ

acquire a complex part i/τλ, where τλ is the finite lifetime of the harmonic phonon λ. In this
approximation one gets �ε(ω

2 −ω2
λ) instead of δ(ω2 −ω2

λ) in the expression for the imaginary
part of the Green function with ε = 2ωλ/τλ which is different for every phonon mode λ.

Thus, in order to calculate the contribution of the LM to the friction coefficient ξ2(Q), we
have to calculate the contribution to the integral in equation (9) due to frequencies ω > ωD

and we shall use the quasiparticle model for that. In practice, we use equation (16) for the
imaginary part of the Green function in which we set ε = 2ωLM/τLM = 2xLMω2

D/τ . Here
the lifetime τLM is measured in terms of the inverse of the Debye frequency: τLM = τ/ωD .
The corresponding integral over frequencies ω � ωD is then calculated approximately by
extending the lower limit to −∞, so the final contribution to the friction reads

ξ
(2)
2 (Q) = λ2τ

2βωDxLM

(
φ′′′(Q)

(λφ′′(Q))2ϑ ′(xLM)

)2

. (19)
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We see that it is proportional to the parameter τ and becomes infinite in the harmonic
approximation when τ = ∞. By assuming finite values of τ , we shall take approximate
account of the phonon coupling, i.e. of the anharmonicity in the surface vibrations.

Note that if we used the Green function of the tip-free surface while calculating this
contribution, i.e. if we neglected the effect of the tip on vibrations of surface atoms, then we
would obtain the result in which the integral in equation (18) is set to one and there will be no
contribution due to the LMs. As will become clear from the next section, this approximation
has a dramatic effect on ξ2(Q).

4. Results

As in the previous study [32], the following values for the constants have been used:
m = 33.2 × 10−27 kg, vc = 10−29 m3 and c = 5 × 103 m s−1, so λ = 0.1769 Å2 eV−1.
Depending on the chemical nature of the tip atom and the first surface atom, various types of
tip–surface interaction can be envisaged. Note that we are interested only in the microscopic
(i.e. ‘chemical’) interaction between tip and surface, as it is the only part of the overall tip–
surface interaction which contributes to the friction [32]. Conservative interactions such
as the van der Waals and electrostatic (capacitance) contributions to the overall tip–surface
force do not lead to energy loss and, therefore, are not considered here. To give some
qualitative account of the effect on the friction of different types of interaction, two qualitatively
different models are considered in this paper: short-range attractive and long-range repulsive
interactions φ(Q). This choice is perfectly valid since during its large-amplitude oscillations
the tip samples a wide range of distances and the system is in general far from equilibrium.
As in [32], attractive interaction has been modelled using the Lennard-Jones (LJ) potential
φ(Q) = 4ε[(σ/Q)12 − (σ/Q)6] with ε = 2.315 eV and σ = 2.35 Å, while the repulsive
potential has been simulated by a simple Coulomb interaction φ(Q) = e2/Q, e being the
elementary charge. One should bear in mind, however, that our model is greatly oversimplified
and probably does not work at distances around 2 Å and below, so the results corresponding
to small tip–surface distances should be considered with care.

First of all, we discuss the calculation of the friction coefficient. The first-order
contribution is shown in figure 1. Results of two sets of calculations are shown. Dotted
curves demonstrate the friction coefficients calculated using the Green function of the perfect
surface, i.e. without the influence of the tip on the vibrations of surface atoms (model I). This
corresponds to dropping the second factor in equation (17) for &1z,1z(0). Solid curves show
the full calculation in which the effect of the tip on the surface vibrations has been taken
into account (model II). It is seen that this effect drastically reduces the calculated friction
coefficient; this is especially noticeable for the LJ potential. In addition, the friction is cut
at small tip–surface distances in the LJ case: if the effect of the tip on surface vibrations is
neglected, the friction sharply and indefinitely grows with approach; however, if this effect
is included, the friction drops to zero at around 2.5 Å. Thus, in the case of the attractive LJ
interaction the friction coefficient ξ1(Q) appears to be essentially non-zero within a finite
interval of the tip–surface distances, somewhere between 2.5 and 4 Å.

In calculating the second-order contribution to the friction, equations (18) and (19), we
have to study first whether there is a LM in the first place. A simple calculation of φ′′(Q)

as a function of Q gives us the necessary criteria. For the case of the attractive LJ potential,
φ′′(Q) > 0 only for Q smaller than some critical distance Qcrit = 2.925 Å. At this distance
the LM splits off from the top of the phonon band at ωD and then moves out toward higher
frequencies as the tip approaches. This is seen in figure 2. The effect is very strong in the case
of the attractive LJ interaction. Interestingly, φ′′(Q) remains positive for all Q in the repulsive
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Figure 1. The first part of the friction coefficient, ξ1(Q), for the LJ (the left panel, in units of
10−10 kg s−1) and the Coulomb e2/Q potentials (the right panel, in units of 10−12 kg s−1) as a
function of the tip distance Q (in Å) to the surface. The dotted curves correspond to model I, the
full lines to model II (see the text).

case considered here, so there is a LM at any Q. However, the position of the LM, xLM , does
not move very much with Q, staying just above 1 at all tip positions.

The calculated second-order contribution to the friction is shown in figure 3. Model I
corresponds to the calculation in which the effect of the tip on the lattice vibrations is completely
neglected. This means that, while calculating the contribution due to the phonon continuum
ω ∈ [0, ωD], the integral in equation (18) for ξ (1)2 (Q) is set to one and the LM contribution
is also neglected. The solid curve corresponding to model II shows the full calculation of
ξ
(1)
2 (Q) in which the effect of the tip on the surface vibrations has been taken into account.

The contribution of the LMs, ξ (2)2 (Q), calculated using τ = 10 is shown by a dash–dotted
curve. In the case of the LJ potential this contribution switches on at Qcrit and then grows
rapidly with the approach of the tip. In the case of the repulsive interaction the LM contribution
is extremely small for all Q > 2 Å and becomes noticeable only at very close approach below
2 Å when our model probably does not work (not shown).

We see that the effect of the tip on the vibrations of surface atoms has a dramatic effect on
the calculated friction coefficient: the first-order contribution, ξ1(Q), as well as the continuum
contribution to the second-order friction coefficient, ξ (1)2 (Q), are noticeably reduced, especially
in the LJ case. However, at small distances there is also a LM contribution which can
substantially increase the friction and compensate for the drop. In the calculations shown
in figure 3 the parameter τ = 10 (i.e. τLM = 10/ωD). For this value of τ the overall
second-order contribution is at least two orders of magnitude smaller than the first-order one.
This demonstrates that the expansion series that we have been using in the calculation of
the fluctuating force autocorrelation function is essentially converged for the plane surface
considered here already in the first-order term. In addition, the friction is found to be much
smaller for the repulsive interaction [32]. Finally, in the case of the attractive interaction each
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Figure 2. Solutions of equation (15), xLM = ωLM/ωD , for different values of Q (in Å) for the LJ
and repulsive Coulomb potentials φ(Q). The critical distance Qcrit in the case of the LJ potential
is indicated by an arrow.

component of the friction coefficient has a characteristic two-peak structure which, as has
been already discussed previously [32], is due to surface relaxation effects which depend on
the position Q of the tip. The friction coefficient varies much more smoothly in the case of
the repulsive interaction potential.

The calculation of the dissipation power has been performed in a standard way using
numerical integration over the tip trajectory of the work done by the friction force [23,30,32].
Two oscillation amplitudes A0 have been considered: 36 Å (case A) and 100 Å (case B). In
each case we used the oscillation frequency of 1.58 × 105 Hz which is typical for the large-
amplitude NC-AFM [11]. Also, in all our calculations the temperature T has been fixed at
300 K. Note that only the second-order term changes with temperature.

The results of our calculations for the attractive and repulsive interactions are shown in
figures 4 and 5, respectively. In these calculations τ = 10. Firstly, we notice that the features
of the friction discussed above are reflected in the calculated dissipation power:

(i) If in model I the power due to the first term in friction sharply grows with the approach
to the surface, its increase is substantially reduced in model II and the power becomes
generally smaller.

(ii) The continuum contribution to the power due to the second part of the friction is also
substantially reduced in model II, but this effect is overpowered by the corresponding
contribution of the LMs at small distances.

(iii) The power due to the second-order term is about two orders of magnitude smaller than
that calculated using the first-order term. This means that at least for the plane surface
considered here and the value of τ = 10 the first-order term is essentially sufficient.
However, as will be shown below, the result is very sensitive to the unknown parameter τ .

(iv) The dependence of the power on the distance of closest approach is much smoother for
the repulsive interaction in comparison with that of the attractive one.

(v) Finally, we see that the power generally grows with the oscillation amplitude.
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Figure 3. The second part of the friction coefficient, ξ2(Q) (in units of 10−13 kg s−1), for the LJ
(the left panel) and the Coulomb e2/Q (the right panel) potentials as a function of the tip–surface
distance Q (in Å). The contributions of the surface phonon continuum ω ∈ [0, ωD] in models I and
II (see the text) are shown by the dotted and solid curves, respectively (marked ‘cont.’), while the
contributions of the LMs (for τ = 10) are shown by the dash–dotted curves. An arrow indicates
the critical distance Qcrit for the LJ case.

It is seen from the results presented above that with the choice of τ = 10 the calculated
dissipation power is much smaller than that observed in experiment. This formally agrees with
the earlier estimates [30, 32]. However, the value of τ is actually unknown. It characterizes
the coupling between the LMs and other phonons: the smaller τ , the larger the coupling and
vice versa. Since the LM phonon lifetime is not easy to calculate or estimate, it is instructive at
this stage to see how the dissipation effect changes with τ . The dependence of the dissipation
energy (per oscillation cycle) on τ for the first-order and the second-order contributions is
shown in figure 6 for the LJ potential. Note that the second-order contribution is almost
entirely due to the LMs. It appears that the contribution of the LMs in the case of the repulsive
Coulomb potential is much smaller than the first-order contribution, ξ1(Q), even for τ = 500,
and the final dissipation energies are very small. Therefore, we do not show the corresponding
graph for this case. The situation is different in the case of the attractive LJ potential: the
first-order contribution, ξ1(Q), dominates if the tip does not come close enough to activate
the LMs. If, however, it comes sufficiently close (that is, below Qcrit at the bottom of the
oscillations), then the contribution of the LMs may become much stronger than that due to
the first component in friction, especially for τ � 400. In fact, one can find such values of τ
for which any desired dissipation energy is obtained. We stress, however, that in our model
this will happen only in the case of the attractive tip–surface interaction when the tip comes
sufficiently close to the surface during its oscillations.
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Figure 4. Dissipation power for the attractive LJ interaction potential versus the distance of the
closest approach (in Å) for two oscillation amplitudes 36 Å (curves marked A) and 100 Å (marked
B). The corresponding contributions due to the first-order, ξ1(Q), and second-order, ξ (1)2 (Q) and

ξ
(2)
2 (Q), terms are shown in the left and the right panels, respectively, for models I and II. The

contributions from the surface phonon continuum (‘cont.’) and the LMs are given separately (for
τ = 10). An arrow indicates the critical distance Qcrit for the LJ case.

5. Discussion

In this paper we re-examined our previous calculations [32] of the dissipation power for a model
plane surface. Two new features have been introduced into the theory in order to verify the
conclusion [30,32] that the stochastic friction force mechanism produces dissipation energies
which are deemed to be much smaller than those observed. We see that the new effects taken
into account in this paper may lead to larger dissipation energies depending on whether the tip
comes sufficiently close to the planar surface that local vibrational modes are induced. A critical
distance at which the LMs split off from the phonon band depends on the actual character of the
tip–surface interaction and, therefore, the lateral position of the tip with respect to the surface.
We have also established a direct link between the dissipation effects and the strength of the
coupling between the LMs and other surface phonons, i.e. anharmonicity. It follows from our
calculations that for long-living LMs (weak coupling) the dissipation effects are actually larger.
The reason for this is not clear and further studies are needed to shed light on this observation.
It is also not clear at this stage whether the LMs can live long enough to ensure dissipation
energies comparable with those observed in experiment. Molecular dynamics simulations may
answer this question.

It is also likely that the dissipation effects are still underestimated in our simplified model
and there are at least two reasons for that. First of all, the surface relaxation effects have not
been properly treated here. In particular, in our model the surface dynamical matrix does not
depend on the tip position Q. In practice, the equilibrium positions q0(Q) of surface atoms
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Figure 5. Dissipation power for the repulsive Coulomb interaction potential versus the distance of
the closest approach. The notation is the same as in figure 4.
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Figure 6. Dissipation energy per oscillation cycle (in eV) for the LJ potential as a function of the
closest approach (in Å). Results for the first, ξ1(Q), and the second, ξ2(Q) = ξ

(1)
2 (Q) + ξ

(2)
2 (Q),

contributions to the friction are shown separately for different values of τ . The arrow indicates
Qcrit and the oscillation amplitude A0 = 36 Å.

which change with the tip positionQwould affect the dynamical matrix as well and, therefore,
the Green function. If we assume that the tip comes sufficiently close to the surface during its
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oscillations, substantial displacements (instabilities) of surface atoms may occur [34] resulting
in significant change of the vibrations of surface atoms. If this effect is combined with the
possibility that LMs can be induced at close approach, we may expect much larger dissipation
energies. Secondly, for the tip-free system we have used essentially the bulk Green function.
This means that possible local surface modes have been completely ignored in our approach.
We may expect, however, that these states which are localized at the surface (but extended in the
lateral directions) may interact strongly with the tip and result in additional enhancement of the
dissipation energies. In this case LMs will exist at any Q and the corresponding contribution
may start to be noticeable much earlier than the critical distance calculated here. Finally, one
has to go beyond the simple model considered here and take into account interactions of all
surface atoms with the tip; in addition, a more appropriate microscopic model for the tip is
also needed. Therefore, more reliable models are necessary to address the points raised above.
We are working in this direction at the moment.

It is well known [23,30,32] that the dissipation power is proportional to the square of the
frequency. The dependence on the oscillation amplitude is not straightforward, however. We
have checked this dependence and found that the dissipation effect increases with the growth
of the amplitude in qualitative agreement with experiment [12].

We conclude this paper by saying that care is needed when comparing the calculated
and measured dissipation energies. The dissipation energy is usually measured in terms of
the amplitude of the driving (excitation) signal [12, 22]. However, as has been noted in [35],
because of the non-linearity of the tip oscillations, the actual dissipation effects due to energy
transfer from the tip to the surface could be much smaller. Note that we calculate precisely
this part of the total energy loss, and there could be other losses in the system as well. Further
investigation is necessary in this direction to completely clarify the issue.
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